Ch 24: origin of species

• What is a species?
• Species Concepts
 - Morphological
 - Biological
 - Isolating mechanisms and hybridization
 - Other Species Concepts
• How do new species arise?
 - Allopatric vs. sympatric speciation
• What is the tempo of speciation?
 - Punctuated equilibrium model and fossil record
• How can new, complex structures evolve?

What is a species?

Species

• A Latin word meaning “kind” or “type”
• There are many kinds of living thing!
• Biologists mean something special by the word species

Morphological Species Concept

• morphology = shape or appearance
 - Collect a type specimen
 - Others that are similar to the type are the same species
 - Very widely used (e.g., insects)
 - Problem - doesn’t take intraspecific variation into account - how similar is similar enough? Are the similarities we notice the important ones?

Biological Species Concept

• Formulated by Ernst Mayr: Ornithologist; one of the contributors to the Modern Evolutionary Synthesis
 - Species are populations or groups of populations whose members have the potential to interbreed in the wild and produce viable, fertile offspring (1942)
• Rationale: hybridization implies mixing - species are distinct because they don’t mix
• Advantage: the organisms decide themselves how different is different enough
Reproductive isolation

What keeps different species from interbreeding? (not counting geography)

- Prezygotic barriers
 - Before mating or fertilization
- Postzygotic barriers
 - After mating or fertilization
- What's a zygote?

Prezygotic barriers (1)

- Habitat isolation: species occupy different habitats in the same geographic area

Three-spined stickleback species differ by lake habitat: benthic vs. pelagic zones

Prezygotic barriers (2)

- Breeding behavior →

Prezygotic barriers (3)

- Temporal isolation: species reproduce at different times in the same geographic area

Prezygotic barriers (4)

- Mechanical isolation: species have incompatible anatomy

Different insects pollinating black sage and white sage

Prezygotic barriers (5)

- Gametic isolation: species have gametes that recognize only their own species
Postzygotic barriers
- Reduced viability: embryos die or fail to develop
- Hybrid offspring born, but have reduced viability or fertility
- Hybrid breakdown: offspring of hybrids have reduced survival or fertility

Horse + donkey = sterile mule

Problems with Biological Species Concept
- The Biological Species Concept works very well with some taxa (birds, for instance) but...
- Information on hybridization lacking for most species

? X

Problems with Biological Species Concept (2)
- In some groups (oak trees, for instance, and many other plants) hybridization between what seem to be quite different species is common.

Problems with Biological Species Concept (3)
- In other groups (some birds), hybridization at least happens occasionally - a little mixing doesn't always break down differences between species

Alternative species concepts
- Phylogenetic species concept - minimum diagnosable unit
- Ecological Species Concept - a set of organisms adapted to a particular set of resources, called a niche, in the environment
- All these species concepts agree most of the time - they differ mostly when applied to borderline or poorly understood cases.
Speciation

• Speciation - when one species splits into two (aka cladogenesis)
• How does it happen?
• Allopatric vs. sympatric speciation

Allopatric Speciation

• Allopatry - “different fatherlands”
 – 1. One species is divided into two isolated populations in two geographic regions
 – 2. The two populations evolve in different directions while apart
 – 3. Isolating mechanisms evolve in the two groups
 – 4. The two populations are unable to breed with each other when they reconnect - they are now two separate species

Sympatric Speciation

• Sympatry = living in the same place
• How could individuals evolve reproductive barriers to others in a local, interbreeding population?
• Theoretically possible, but evidence suggests it’s rare at best
• Organisms can undergo sympatric speciation by producing polyploid offspring

Modes of speciation

Fig. 24.6

Allopatric speciation in ground squirrels

Speciation by production of tetraploids
Sympatric Speciation (1)

Tree Frogs

Hyla chrysocelis
Hyla versicolor

Sympatric Speciation (2)

- Mate choice by cichlids

![Fig. 24.16](https://example.com/image)

Adaptive radiation

- Example?

![Fig. 24.11](https://example.com/image)

Is speciation gradual or sudden?

- Paleontologists have a hard time seeing gradual change in the fossil record. More often, a form appears suddenly, then, after persisting for some eons, disappears from the fossil record just as suddenly.
- Why is this?
Evolutionary Novelties

- So for novel complex structures to arise by natural selection
 - 1. Each step must be a plausible small minor modification of the one before it
 - 2. Each step must be an improvement on the one before it

A simple patch of pigmented cells detects light

If a depression forms with the pigment cells in it, can detect direction of light source

A depression with a small opening allows formation of images on the light-sensing cells
A lens within the eye allows better focussing and allows more light to enter.

A lens that can change shape allows near and far focussing.

Is it plausible?
- Could these different stages have existed?
- Would they each give their owners an advantage?