Macromolecules

- Biological macromolecules are incredibly diverse
- Four major classes of macromolecules are lipids, carbohydrates, proteins and nucleic acids
- Many macromolecules are polymers

Polymers

- Polymers are large molecules built of smaller repeating subunits
- The subunits are called monomers
- Adjacent monomers are often joined by condensation (dehydration) reactions
- Molecules that serve as monomers may also have other functions

Polymers, cont.

- From a small set of monomers, you can make a practically infinite set of polymers
- Monomers are often identical in different life forms, but polymers (macromolecules) differ

The four classes of macromolecules

- Lipids
- Proteins
- Carbohydrates
- Nucleic Acids

Lipids

- Diverse molecules, all hydrophobic
 Lipids do not form polymers

- Examples (functions):
 Fatty acids (energy transport)
 Neutral fats or triacylglycerols (storage)
 Phospholipids (cell membranes)
 - Steroids (membranes, hormones)

Ester	linkage											
H-C+O	0—С Н-С-Н	H-O-H	H-C-H	H-C-H	H-O-H	н_с_н	H-O-H	H-Q-H	H−¢−H	H −Q− H	H-C-H	H C H
H-C+O	О — С — Н Н-С — Н	H-O-H	H-C-H	H-C-H	H-O-H	н н с н	H-C-H	H-Q-H	H-Q-H	H-Q-H	H-C-H	H C H
H-C-0 H	о н 	H-O-H	H-O-H	H-0-H	H-Q-H	н-0-н	H-O-H	H-Q-H	H-Q-H	н−о́−н	H-C-H	H C H
(b) Fat mole ©1999 Addison Wes	ecule ley Longman, I	inc.										

- Used for fuel, structure, carbon storage
- Based on sugar monomers
- Monosaccharides, disaccharides, polysaccharides
- Starches vs. cellulose

Proteins are made of amino acids

- Amino acids are the monomers that make up proteins
- Each amino acid consists of a central carbon attached to a hydrogen, a carboxyl group, an amino group and an "R" group.
- There are 20 different amino acids

Protein Structure I

- Amino acids can be joined by "peptide bonds" (dehydration synthesis again)
- A *polypeptide* is a polymer of amino acids
- A protein consists of one or more polypeptide strands

Protein Structure II

- A protein's function depends on its shape
- There are four levels of protein structure that together determine its final shape

Primary Structure...

• ... is the specific order of amino acids making up a polypeptide chain

Secondary Structures...

- ...are regular repeated shapes formed by certain sequences of amino acids:
 - Alpha-helixes
 - Beta pleated sheets
- These are stabilized by hydrogen bonds between *backbone* molecules (not side chains)

Protein Denaturing

- Under harsh conditions (extreme temperatures, acid or alkaline solution) proteins lose their shape they *denature*
- Denaturing may be reversable or irreversable

Nucleic Acids

- Nucleic acids store and transmit hereditary information, both within the cell and between generations
- Information in a cell flows from DNA to RNA to protein
- DNA contains the blueprint for making specific proteins

- Nucleotides consist of three parts -
 - a five carbon sugar
 - a phosphate group
 - a nitrogenous base
- Different bases make for different nucleotides

DNA vs RNA

- They differ in the sugar (deoxyribose vs ribose)
- DNA's four bases are Adenine, Cytosine, Guanine, Thymine (A, C, G, and T)
- RNA contains Uracil, no Thymine (A, C, G, and <u>U</u>)
- DNA forms a double helix, RNA is singlestranded