Suppose that \(\{v, w\} \) is a linearly independent set in a vector space \(V \).
Prove that \(\{v - w, 3v + 2w\} \) is a linearly independent set as well.

Since \(\{v, w\} \) is a linearly independent set,
if \(a(v) + b(w) = 0 \) then \(a = 0 \) and \(b = 0 \).

Now consider the set \(\{v - w, 3v + 2w\} \).

If \(c_1(v - w) + c_2(3v + 2w) = 0 \) \((*) \)

I find \(c_1, c_2 \).

Regrouping the left hand side:

\[
(c_1 + 3c_2)v + (-c_1 + 2c_2)w = 0
\]

By lin ind of \(\{v, w\} \), we have

\[
c_1 + 3c_2 = 0 \quad \text{and} \quad -c_1 + 2c_2 = 0
\]

\[
\begin{bmatrix}
-1 & 3 & 1 & 0 \\
-2 & 1 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & 5 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 3 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix}
\]

So \(c_1 = 0 \) and \(c_2 = 0 \).

Since the only solution to equation \((*) \) above is the trivial solution, the set \(\{v - w, 3v + 2w\} \) is linearly independent.