1. Use Mathematical Induction to prove that for all natural numbers n

$$
\sum_{k=1}^{n}(3 k-2)=1+4+7++(3 n-2)=\frac{n(3 n-1)}{2}
$$

2. Use Mathematical Induction to prove that $n!>4^{n}$ for all natural numbers $n \geq 4$.
3. The Fibonacci numbers are defined by $f_{1}=1, f_{2}=1$ and for each natural number n, $f_{n+2}=f_{n+1}+f_{n}$. Prove that for all natural numbers n, the Fibonacci number $f_{3 n}$ is even.
4. Make a Venn diagram that illustrates that for any sets A and $B, A \cap B \subseteq A$ and $A \subseteq A \cup B$. Then prove these assertions.
5. Prove that for any sets A and $B,(A \cap B)^{c}=A^{c} \cup B^{c}$.
6. Let $A=\{x, y\}$ and let $B=\{1,2\}$ and let S be their Cartesian product, i.e., $S=A \times B$. List the elements of S. How many elements are in the power set of $S, P(S)$? Is $S \subseteq P(S)$, or is $S \in P(S)$?
7. For each natural number n, let $A_{n}=\{x \in \mathbb{R} \mid n-1<x<n\}$. Prove that $\left\{A_{n} \mid n \in \mathbb{N}\right\}$ is a pairwise disjoint family of sets.
8. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=x^{2}$. Sketch the graph of f. Prove that f is neither one-to-one nor onto. How could the domain and codomain be modified to make f a bijection?
