\qquad

1. Make a truth table for the following statements: $p \vee \neg q, \neg p \wedge q, p \rightarrow \neg q$ and $p \vee(p \rightarrow q)$. Which of these are tautologies, contradictions, negations or equivalents?
2. Write (in English) the contrapositive, converse and negation of the statement: If it is sunny, then I am playing golf or at the beach.
3. Write a symbolic expression for the negations of
a) $\exists n \in \mathbb{N}$ such that $e<n<\pi$
b) $\forall n \in \mathbb{N}, n^{2}+n$ is even
4. Prove that if $a \mid b$ and $a \mid c$ then $a \mid(2 b+3 c)$.
5. Prove that if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ then $a \equiv c(\bmod n)$
6. Prove that for all integers n, if n^{2} is even then n is even.
7. Prove or disprove: if $x \in \mathbb{Q}$ and $y \in \mathbb{Q}^{c}$ then $x y \in \mathbb{Q}^{c}$
8. Prove that every odd integer n can be written as $4 k+1$ or $4 k+3$ for some integer k.
